skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nematirad, Reza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time series forecasting is an important application in various domains such as energy management, traffic planning, financial markets, meteorology, and medicine. However, real-time series data often present intricate temporal variability and sharp fluctuations, which pose significant challenges for time series forecasting. Previous models that rely on 1D time series representations usually struggle with complex temporal variations. To address the limitations of 1D time series, this study introduces the Times2D method that transforms the 1D time series into 2D space. Times2D consists of three main parts: first, a Periodic Decomposition Block (PDB) that captures temporal variations within a period and between the same periods by converting the time series into a 2D tensor in the frequency domain. Second, the First and Second Derivative Heatmaps (FSDH) capture sharp changes and turning points, respectively. Finally, an Aggregation Forecasting Block (AFB) integrates the output tensors from PDB and FSDH for accurate forecasting. This 2D transformation enables the utilization of 2D convolutional operations to effectively capture long and short characteristics of the time series. Comprehensive experimental results across large-scale data in the literature demonstrate that the proposed Times2D model achieves state-of-the-art performance in both short-term and long-term forecasting. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026